HomogeneityTestBBU.jl
HomogeneityTestBBU implements the permutation test from Bugni, Bunting and Ura (2023). By default, the test function takes the data X
and a test statistic test_stat_fn
and returns the p-value computed as Equation (4), Bugni, Bunting and Ura (2023). The test rejects the null of homogeneity for all significance levels greater than the p-value.
HomogeneityTestBBU.homogeneity_test_fn
— Functionhomogeneity_test_fn
This function implements the homogeneity test of Bugni, Bunting and Ura (2023).
Arguments
X::Tuple
: The data in the form of tuple $X=(S, A)$, where A may be empty.test_stat_fn::Function
: A function that takes the arguments $S$ and $A$ (or $S$ only, if $A=[~]$) and returns a (vector of) test statistics.K::Int
: An integer indicating the length of the MCMC chain. Defaults to 10,000.verbose::Vector{String}
: Possible elements of the vector are"P value"
,"Test stat"
, and"X^K"
. Defaults to empty.A_trivial::Boolean
: A Boolean indicating whether $S'=A$. Defaults to false.
Values
Pvalue
: The test's p-value (Bugni, Bunting and Ura (2023), equation (4)).Pvalue_chain
: The p-value computed at each of $K$ steps (optional).test_stat_chain
: The test statistic computed on $X$ and of $K$ steps (optional).- `X_K': The tuple containing the the permuted data (optional).
HomogeneityTestBBU.euler_algorithm
— Functioneuler_algorithm
This function applies a Euler algorithm to the First Order Markov chain x
Arguments
x::vector
Empirical vignette
The following code replicates the empirical application in Bugni, Bunting and Ura (2023).
Before = S[:,1:11];
After = S[:,12:end];
@time tAfter = homogeneity_test_fn(X = (After, []),
test_stat_fn = test_fn,
K=50000)
println(tAfter.Pvalue)
@time tBefore = homogeneity_test_fn(X = (Before, []),
test_stat_fn = test_fn,
K=50000)
println(tBefore.Pvalue)
135.135480 seconds (1.08 G allocations: 64.832 GiB, 10.00% gc time, 0.02% compilation time)
[0.73386, 0.68296]
219.139955 seconds (1.75 G allocations: 114.522 GiB, 10.30% gc time)
[0.21194, 0.12166]
Data and test statistic for empirical vignette
S = [ 13 13 13 13 11 8 8 8 7 7 6 6 9 9 9 8 8 9 9;
15 20 19 19 20 20 14 15 21 20 20 20 21 21 19 19 19 20 20;
14 14 14 14 14 15 15 15 15 15 15 15 13 13 12 12 12 12 12;
12 12 12 12 12 12 12 12 12 12 13 13 13 13 13 13 12 13 13;
32 36 36 37 38 38 38 36 32 33 33 35 36 35 33 33 33 35 34;
13 18 16 16 16 17 17 17 14 15 15 14 14 15 13 13 13 13 13;
7 10 10 10 10 8 8 9 11 11 11 10 10 10 9 10 10 10 10;
17 17 18 18 18 18 18 16 16 16 16 15 15 15 14 14 14 14 14;
14 13 13 11 11 11 11 12 12 12 12 11 11 11 10 11 11 11 10;
23 23 22 24 24 24 24 24 23 22 22 20 20 20 19 20 20 20 20;
8 10 10 10 10 10 10 10 10 8 8 8 8 8 8 8 9 9 10;
13 13 13 12 12 7 7 9 12 12 12 13 13 13 12 12 12 12 12;
14 14 14 14 14 14 14 14 14 14 14 14 14 14 13 12 12 13 13;
11 11 11 11 11 11 11 11 11 11 9 9 9 9 8 8 8 8 8;
11 11 11 9 9 9 8 9 9 6 6 6 6 6 5 6 6 6 6;
17 18 18 18 18 17 18 18 18 18 18 18 18 18 16 16 16 16 17;
28 25 23 25 25 23 23 23 23 23 23 23 24 24 22 22 22 20 20;
22 21 21 22 21 21 22 22 22 21 22 21 21 22 20 20 20 20 21;
19 19 15 17 17 17 17 17 17 17 17 17 18 18 14 14 14 14 15;
11 12 12 12 11 11 11 9 8 8 8 8 8 5 5 5 5 5 5;
33 32 27 30 30 30 30 31 31 31 31 33 33 34 30 31 30 31 31;
12 12 12 11 12 12 12 12 12 12 12 13 12 12 11 11 11 11 12;
47 46 45 51 48 47 47 44 43 39 39 39 39 39 36 36 36 36 36];
function test_fn(S_data)
S_support = sort(unique(S_data[:,1:(end-1)]))
outcome_support = sort(unique(S_data[:,2:end]))
S_cols = size(S_data, 2);
T_P = 0;
T_P_star = 0;
for j2 in eachindex(S_support)
tmp0 = S_data[:,1:(end-1)] .== S_support[j2];
tmp1 = unique(S_data[:,2:end][tmp0])
tmp_i = findall(vec(sum(tmp0, dims=2) .> 0))
for j3 in eachindex(tmp1)
P_d_tmp = sum((S_data[:,2:end][tmp0] .== tmp1[j3])) / sum(tmp0);
for j1 in tmp_i
P_j_d_tmp = sum((S_data[j1,2:end][tmp0[j1,:]] .== tmp1[j3])) / sum(tmp0[j1,:]);
W_j_d_tmp = sum(tmp0[j1,:]) / P_d_tmp
T_P = T_P + W_j_d_tmp * (P_j_d_tmp - P_d_tmp)^2
if P_j_d_tmp > 0
T_P_star = T_P_star + 2 * W_j_d_tmp * P_d_tmp * P_j_d_tmp * log(P_j_d_tmp / P_d_tmp)
end
end
end
end
return T_P, T_P_star
end
test_fn (generic function with 1 method)